
Pergamon

002o-7683(95)00291-X

Int. J. Solids Structures Vol. 34. No.1, pp. 7Y--9lj" 1997
Copyright 1996 Elsevier Science Ltd

Prmted in Gleat Britain. All rights reserved
0020-76R3/97 S15.00 + .00

ANTI-PLANE SHEAR DEFORMATIONS OF
ANISOTROPIC SANDWICH STRUCTURES: END

EFFECTS

S. C. BAXTER and C. O. HORGAN
Department of Applied Mathematics, School of Engineering and Applied Science,

university of Virginia, Charlottesville, VA 22903, U.S.A.

(Receiued 17 June 1995; in revisedform 20 November 1995)

Abstract-Saint-Venant decay lengths for self-equilibrated edge loads in symmetric sandwich struc­
tures are examined in the context of anti-plane shear for linear anisotropic elasticity. The most
general anisotropy consistent with a state of anti-plane shear is considered. Anti-plane or longi­
tudinal shear deformations are one of the simplest classes of deformations in solid mechanics. The
resulting deformations are completely characterized by a single out-of-plane displacement that
depends only on the in-plane coordinates. In linear elasticity, Saint-Venant's principle is used to
show that self-equilibrated loads genemte local stress effects that decay away from the loaded end
of a structure. For homogeneous isotropic linear elastic materials this is well-documented. Self­
equilibrated loads are a class of load distributions that are statically equivalent to zero, i.e., have
zero resultant force and moment. When Saint-Venant's principle is valid, pointwise boundary
conditions can be replaced by more tractable resultant conditions. It is shown in the present study
that material inhomogeneity and anisotropy significantly affects the practical application of Saint­
Venant's principle to sandwich structures. Copyright I£J 1996 Elsevier Science Ltd

I. INTRODUCTION

Anti-plane or longitudinal shear deformations are one of the simplest classes of defor­
mations in solid mechanics. The resulting deformations are completely characterized by a
single out-of-plane displacement that depends only on the in-plane coordinates. While these
deformations have received little attention compared with the plane problems of linear
elasticity, they have recently been investigated by Horgan and Miller (1994) in the context
of anisotropic and inhomogeneous linear elasticity. A comprehensive review of anti-plane
shear for both linear and nonlinear elasticity has been given recently by Horgan (1995).

It is the objective of the present work to utilize the relative analytic simplicity of the
anti-plane shear (APS) problem to analyze Saint-Venant decay rates for self-equilibrated
edge loads applied to symmetric sandwich structures. The most general anisotropy con­
sistent with APS is considered. The cases of perfect and imperfect bonding at the layer
interfaces are investigated and their effects on the stress decay rate are examined.

Designers of composite structures are constantly faced with the task of assessing stress
decay effects associated with loading conditions, cut-outs, and other local discontinuities.
Thus, a thorough understanding of Saint-Venant's principle as it applies to composite
materials is of fundamental importance in expanding the development of composite struc­
tures technology. Previous work has shown that, even for homogeneous anisotropic
materials, anisotropy can significantly affect the decay of Saint-Venant end effects. In
particular, for the strongly anisotropic materials used in fiber-reinforced structural lami­
nates, it has been shown that the decay length can be much longer than that for isotropic
materials under the same loading conditions. The implications for the mechanics of com­
posites have been widely discussed (see, e.g., the references cited at the end of the present
paper).

The effects of material inhomogeneity have also been investigated, though not as
extensively. In Choi and Horgan (1978) plane deformations of sandwich strips, with iso­
tropic phases, were examined. In particular, for a sandwich strip with a relatively compliant
core, the characteristic stress decay length is shown to be much greater than that for the
homogeneous isotropic strip. An asymptotic estimate for the decay rate is also presented
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Fig. I. Typical cross-section of symmetric sandwich structure; self-equilibrated loads applied at
x = O.

in Choi and Horgan (1978) which agrees well with exact numerical results (see, e.g.,
Horgan (1982». See also Wijeyewickrema (1995), Wijeyewickrema and Keer (1994), and
Wijeyewickrema et al. (1996) for more recent results on the plane problem.

In Section 2 the anti-plane shear problem is formulated for a linearly elastic sandwich
structure with anisotropic phases, subject to self-equilibrated end loading only. Solutions
which decay in the longitudinal direction are described and transcendental equations
obtained for an eigenvalue A on which the characteristic decay length predominantly
depends. In Section 3, the special case of a sandwich structure with isotropic phases is
examined. For this case the decay length is proportional to the half-width of the sandwich
divided by I.. Asymptotic estimates for the decay length are obtained for the cases of a
relatively compliant and relatively rigid core, respectively. Only one dimensionless material
parameter (j, the ratio of the shear moduli of the two materials, appears in the analysis.
These estimates are compared to the exact values obtained by numerical methods. Section
4 considers the effect of incorporating conditions of imperfect bonding at the layer interfaces
into the model. The fully anisotropic problem is considered in Section 5. Illustrative
examples for sandwich structures with orthotropic phases are examined in Section 6. In
Section 7, the main results are summarized.

2. FORMULATION OF THE ANTI-PLANE SHEAR PROBLEM

2.1. Geometry and kinematics
Consider a three-layered symmetric sandwich structure with cross-section as shown in

Fig. I. The outer layers are constructed of the same material and the inner core of a second
material. The material in each layer is assumed to be homogeneous, anisotropic and linearly
elastic. The cross-section of the structure is taken to be semi-infinite. It is convenient to
establish a coordinate system for each layer, with common x and z axes and separate y­
axes for each layer, which are then denoted by YI, Y2, Y3' The layers are numbered from top
to bottom, I, 2, and 3.

To study Saint-Venant end-effects in anti-plane shear, a prescribed traction of the form
t* = (0, 0, tV, shown schematically in Fig. I, is applied on the portion of the boundary
where x = O. This shear is in the direction parallel to the z-axis and independent of the out­
of-plane coordinate z, i.e., t~ = t~(O,yJ The top and bottom surfaces of the sandwich are
taken to be traction-free, and the applied tractions at x = 0 are assumed to be self­
equilibrated. As x ---> CfJ, it is assumed that u = (Ub U2, U3) ---> O. Under such conditions it is
shown by Horgan and Miller (1994) that the deformation is an anti-plane shear (APS)
deformation with

(I)

Since the out-of-plane displacement is the only non-zero component of displacement, the
subscript 3 will be dropped where convenient, and ui will signify the displacement in the ith
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layer. The constitutive equation for an anisotropic linearly elastic solid is used, i.e., the
generalized Hooke's law

(2)

where Tij are the Cauchy stress components and 0kl are the linear strains. The ejkl are the
elastic coefficients; for each homogeneous layer they are constants, and satisfy the usual
symmetry conditions. It is shown by Horgan and Miller (1994) that the conditions

Cx/J3;' == 0, (rx,j3,y = 1,2) in each layer (3)

are sufficient for a non-trivial (i.e" grad U3 i= 0), state of APS to be sustained in the body.
The out-of-plane displacement U3 == U must then satisfy the single equation

(4)

where fl; denotes the cross-section of the composite. As discussed by Horgan and Miller
(1994), a wide class of anisotropic materials, including the monoclinic material (with 13
independent elastic constants) satisfy (3).

Using the notation

(5)

eqn (4) can be rewritten as

(6)

The non-zero in-plane stresses are

(7)

(8)

The three-dimensional strain energy density is assumed positive definite in each layer. This
assumption requires that

(9)

for each layer.
It is assumed that the materials are perfectly bonded at the layer interfaces so that the

displacements and tractions are continuous there, so that

(10)

(11 )

and

(12)

(13)

respectively. In (12) and (13) the Aali ofeqn (6) are replaced by Gali' representing the material
constants in layers 1 and 3, and ba/J' representing those of layer 2.

The traction-free boundary conditions on the top and bottom read
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(14)

(15)

Since they are not used explicitly, the boundary conditions at x = 0 are not written down.

2.2. Forms of the solution
It is shown by Baxter (1995), and Baxter and Horgan (1995) that exponentially

decaying solutions of (6) may be written as

where }.; > 0, since it is required that u' -> 0 as x -> 00. It is understood that C3 == C]. The
dimensionless material parameters B; in (16) are defined by

(17)

(18)

Equation (16) represents the solution in the i th layer. The (I.; and [3; are constants that differ
in each layer, the A,/i are the appropriate material coefficients; i.e., a,fJ in layers I and 3,
and b,/i in layer 2, and the Ci are the half-width of each layer. (See Fig. 1.) Because eqns
(10) and (11) must hold for all x, it follows from (16) that

AI A2 A3

clfi = C2.jB'2 = C3yfJi;'
(19)

and so the exponential decay rates in (16) are the same for each layer. Since C1 == C3, and
B 1 == B3, we see that Al = A3' Introducing the notation

(20)

the exponential decay rates A,!c,fi can be c~ared with that for a homogeneous strip
of "weighted" total half-width (2c]fi+c2 VB 2 ). If a non-dimensional weighted volume
fraction is defined as

(21)

it is possible to express both A] and A2 in terms of J. and /:

(22)

When (16) is substituted into (10)-(15), the conditions for a nontrivial solution of the
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resulting linear homogeneous system of equations is a transcendental equation satisfied by
A (see Baxter (1995)), and given by

_l2 sin2(j,~.) sin [U(I-j)] +cos2(jA) sin [2A(1-j)]

+2lcos (jA) cos [lA,(1- j)] sin (jA) = 0, (23)

where

(24)

By virtue of (9), it is seen that

(25)

It is shown by Baxter (1995) that the roots A of (23) are all real. A complete solution to
(6), subject to prescribed boundary conditions at x = 0, would involve an infinite series of
eigenfunctions of the form (16). As explained in Horgan and Knowles (1983) and Horgan
(1989), for example, the decay rate k for the solution in each layer is given by (20), where
). is the smallest eigenvalue, i.e., the smallest positive root of (23). By virtue of (7), (8), k is
also the decay rate for the stresses.

3. SPECIALIZAnON TO ISOTROPY

If each of the layers is assumed to be isotropic, considerable simplification occurs. In
this case the material constants in the outer layer are

(26)

and so

(27)

In the center core layer

(28)

and thus

(29)

In the above, fll and fl2 are the shear moduli of the material in the outer layers and the core,
respectively. These shear moduli are the only elastic constants that appear in the analysis
of the isotropic problem. Using (27), (29) and (20) the exponential decay factor e- kx for
each layer has a decay rate k given by

(30)

where A is the smallest positive root of (23). The characteristic decay length d (i.e., the
distance over which end effects decay to 1% of their value at x = 0) is defined by

In (100)
d=. k .

The weighted volume fraction,], given by (21), reduces to a simple volume fraction

(31 )
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(32)

representing the relative thickness of an outer layer to the half-width of the entire structure.
In what follows, primary attention will be given to fwithin the interval 0.1 ~f ~ 0.9. The
ends of this interval correspond to the physical ideas of a thin and thick outer layer
respectively. Similarly, the limits f ----> 0 and f ----> 1 correspond to a homogeneous strip com­
posed of the core or face material only. For the isotropic sandwich, the material parameter
b, defined by (24), now simplifies to the ratio of the two shear moduli

(33)

The parameters without the "carat" symbol will denote the isotropic case. The form of the
transcendental eqn (23) remains the same, with/, b replaced by f, (5 for the isotropic case.
For convenience the parameter (5 is referred to as the core ratio, with the understanding
that a large core ratio means that the core is more compliant in shear than the outer layers
and a small core ratio means that the core is stiffer in shear than the outer layers.

3.1. Properties of the transcendental equation
Some properties of the transcendental eqn (23) in the isotropic case are established in

Baxter (1995). For convenience, these are summarized below:

1. The eigenvalues are real.
2. The transcendental equation can be factored. It will be assumed that A =I- OJ =I- 0.5.

(When! = 0.5 the transcendental equation can be solved explicitly for )., see below.)
The decay rate, given by (30), is ;e/(half-width of strip), where Ie is the smallest root
of the reduced equation

cot(fle) cot [(1-f)).)-(5 = o. (34)

It can be seen that this equation is symmetric with respect to interchanges off and
(1-1), so that the smallest positive root is unaffected by this exchange. Eachfwith
its corresponding (1 - f) will be referred to as a symmetric pair.

3. When III = Ih so that the strip is homogeneous, (33) yields (5 = 1. In this case, eqn
(23) reduces to

sin (2,1) = O. (35)

The smallest positive root of (35) yields the exact decay rate for a homogeneous
isotropic strip, i.e.,

(36)

so that u decays as

e- kx
, k = nih, (37)

where h is the strip width. The decay length is thus approximately one and a half
times the strip width. The foregoing results for harmonic functions on semi-infinite
strips are well-known (see, e.g., Horgan and Knowles (1983), Horgan (1989)).

4. Equation (23) can be solved explicitly for Awhenf = 0.5, i.e., when 2cI = C2' This
will be referred to as the canonical geometry, and the decay length is given by (31),
(30) with
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_ _I ( 1 )
I, = 2tan Jb' (38)

3.2. Asymptotic estimates as <5 -> oc
Analogous work on the plane problem by Choi and Horgan (1978) shows that for a

relatively compliant inner core (/11 » /12), i.e., <5 -> en, the decay length tends to infinity.
Numerical solutions to (34) verifies that this is the case here also. An asymptotic analysis
of (34) with (30), (31) shows that

d ~ In(100)[<5j(1-f)]1!2 as 6 -> oc(O <f< 1), (39)

where the dimensionless scaled decay length is defined by

(40)

The exact d, computed from (31), (34), (40), are shown by the solid curves in Figs 2 and 3.
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Fig. 3. Scaled decay length vs volume fraction (6 = 100).
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The asterisk denotes values calculated from the asymptotic formula (39). Note that the
asymptotic estimate is invariant with respect to interchanges of1 and (1-/). Figure 2
indicates that for values of t5 ~ 100, 0.1 ~/~ 0.9, the result (39) provides a very accurate
estimate for the decay length.

3.3. Asymptotic estimates as (j -+ 0
It is shown by Baxter (1995) that

r~ In (100)[(I -I) +ji5J,

J =t~ln (100)[(+ (I--f).I,

(0</~0.5)

(0.5 ~/< 1)

as t5 -+ O. (41)

From the definition of t5 in (33), it is seen that t5 -+ 0 corresponds to PI « f.12, i.e., a relatively
stiff inner core. The exact decay lengths for a range of (j representing a stiff core are plotted
in Fig. 4 and compared with the limiting estimate (41).

3.4. Summary
For the isotropic sandwich structure the decay lengths are the same for each symmetry

pairJand (1- f), throughout the range of the core ratio. Increasing order of the symmetry
pairs is defined as follows, (0.1, 0.9), (0.2, 0.8), (0.3, 0.7), (0.4, 0.6), (0.5, 0.5), the last of
which is the canonical geometry.

The effect ofgeometry is reversed at the transition value t5 = 1. For a stiff core, (6 < 1),
decay lengths decrease with the increasing order of the symmetry pairs. For a compliant
core, (t5 > 1), decay lengths decrease with the decreasing order of the symmetry pairs. The
decay length is a monotonic increasing function of the core ratio b. These results are
analogous to those of Choi and Horgan (1978) for the plane problem which predict
slower decay rates, and thus longer decay lengths, for an increasingly compliant core. An
asymptotic result analogous to (39) is also obtained in Choi and Horgan (1978) (see eqn
(4.1)). See also Horgan (1982).
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4. IMPERFECT BONDING
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4.1. Modified interfacial conditions
The condition of perfect bonding used in Section 2 assumes that both displacements

and tractions are continuous across the layer interfaces. In this section the consequences of
relaxing this condition are examined. In what follows, attention will be confined to the case
of isotropic phases. The condition of imperfect bonding (see, e.g., Benveniste (1984), Aboudi
(1987)) is modeled in the anti-plane shear context by modifying the interfacial conditions
to allow jumps in the displacements proportional to the tractions at the interface. In the
present case, there are no normal tractions at the interfaces so these conditions refer
only to the tangential displacements. It is assumed that (12) and (13), the conditions for
continuous traction, with al2 = 0, b l2 = 0, all = an = }1[, bll = bn = }12, still hold. Equa­
tions (10) and (11) are replaced by

(42)

(43)

respectively, where fJJl is a constant of proportionality and T32 serves to represent the
components of traction at the interfaces. As !Jll ---+ 0, perfect bonding is recovered, while as
fJJl-4 OC, perfectly lubricated contact (Aboudi (1987)) at the interfaces is obtained. It is
convenient to define a new dimensionless parameter

(44)

Use of this parameter is motivated by the form of eqn (49) in Benveniste (1984) except here
it is scaled by the half-width of the structure rather than the total width. On using the
definition of (j in (33), this dimensionless constant can be rewritten as

(45)

which will be referred to henceforth as the slip constant. When fJJl = 0, so that the interfaces
are perfectly bonded, then it follows that r:t. = 0. For typical slipping interfaces, r:t. is a small
number. For example, if the core material is glass and the face material an epoxy resin, the
data given in Devries (1993) on pages 361 and 366 suggest that r:t. (2cI +C2) "'= 3.138310- 4 m.

The transcendental equation for A is (see Baxter (1995))

r:J.2(j2 A2 r:t.b 2A
(1 +(j)2 sin2 (fA) sin [lA(1-f)] -2 (1 +b) sin2 (fA) cos [2A(I-f)]

r:t.bA
- 2 (1 + (j) sin (fl.) sin [2..1.(1- f)] cos (f}.) - (j2 sin2(.fA.) sin [2}.(1 -f)]

+cos2(f}.) sin [2A(I-f)]+2bcos(fA) cos [2A(1-f)] sin (fA) = 0. (46)

As rx ---+ 0, (46) reduces to (23) without the carat symbol.

4.2. Decay lengths
The values of the scaled decay lengths d for the sandwich structure withf = 0.5, and

for representative values of the core ratio, i.e., b = 0.1, b = 0.5, b = 1, b = 2, (j = 10, are
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Exact decay lengths, slip model, f = .5
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0.0001

Fig. 5. Exact decay lengths vs ex, volume fractionf = 0.5.

plotted in Fig. 5 for the range 0 ::( CI. ::( 100. Setting <5 = I corresponds to the physical case
where, for CI. > 0, layers of identical materials are allowed to slip. The case ex = 0, <5 = I
corresponds to a homogeneous isotropic strip for which d = 2 In (100)ln (see (31), (36)).

Benveniste (1984) calculated the exact decay rates for a similar sandwich structure
under conditions of plane strain, where imperfect bonding, i.e., discontinuous tangential
displacements were allowed. The material parameter used by Benveniste (1984), which is
comparable to the core ratio b used here, is the ratio of the Young's moduli, EdE2 - Two
values were chosen by Benveniste (1984); namely E IIE2 = 2 and E IIE2 = 10. In Figs 3 and
4 of Benveniste (1984), the exact decay rates are plotted vs

(47)

where R is the constant of proportionality used in Benveniste (1984), and the 1', involve the
Poisson ratio for each layer, of width Cio respectively (cf. (44)). The scaled decay lengths in
Fig. 5 may then be compared to the scaled decay rates k plotted in Figs 3 and 4 of Benveniste
(1984).

In both works, as ex or R increases, the decay length increases and tends to infinity as
ex or R~ CfJ. Thus, the larger the amount of slip, the slower the attenuation of Saint-Venant
end effects. The implications for the mechanics of composites, for example in estimating
effective moduli, is discussed in Benveniste (1984). Under either deformation, APS or plane
strain, it is seen from Fig. 5 here and Fig. 3 of Benveniste (1984), where EllE2 < I, that the
longer decay length is associated with the larger core ratio <5 (a more compliant core).
Figure 4 of Benveniste (1984) shows that for the plane problem with EllE2 > I, this ordering
is reversed in the range I ::( R ::( 1000.

4.3. Asymptotic estimates as ,ex ~ CfJ

The numerical results illustrated in Fig. 5 show that the decay length tends to infinity
as ex ~ 00. This motivates the development of asymptotic formulas which describe this
limiting behavior. It is shown in Baxter (1995) that

- ~
d ~ In (100) V(T+b) as ex ~ CfJ. (48)

In Fig. 6 values calculated from the estimate (48), when f = 0.5, for the two values of the
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Exact and estimated decay lengths, f = .5
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Fig. 6. Exact and estimated decay lengths vsy., volume fraction!" = 0.5.

material parameter b = 0.1, b = 10 is denoted by asterisks. It is seen that (48) provides an
accurate estimate for large values of x. From (48) it is also seen that for large values of rx
and all values of b the decay lengths increase with increasing volume fraction.

4.4. Summary
Relaxing the interfacial conditions by allowing a jump in the tangential displacement

proportional to the shear traction on the interface results in longer decay lengths than
under conditions of perfect bonding. This is seen in Fig. 5, where the values of the decay
length at :X = 0 correspond to the case of perfect bonding. It is also easily seen from this
figure that as the amount of slip increases the decay length increases. This trend is physically
intuitive in that slip between the interfaces represents a loss in the rigidity of the structure
and a slower decay of end effects would then be expected. For a noticeable range of small
x, the decay lengths are virtually the same as those for perfect bonding with the same core
ratio and volume fraction. From Fig. 5 it is also seen that while the decay lengths increase
as the slip constant (j, increases they also increase with increasing b. This is the same
relationship observed under conditions of perfect bonding. These points of similarity with
the case of perfect bonding suggest that the addition of a small non-zero slip constant in
modeling a sandwich structure preserves the material and geometric effects predicted by
the perfect bonding model.

5. THE GENERAL ANISOTROPIC CASE

Under the most general anisotropy consistent with anti-plane shear, the decay rate k
is given by (20h i.e.,

(49)

where the dimensionless material parameters Sa are defined in (17), (18) and the tran­
scendental equation for A is given by eqn (23). Recall from (24), (21) that the following
definitions hold:
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o
a ll a22 -a12

bll b22 -bT2 '
(50)

(51 )

To obtain (51), eqns (17), (18) have been used and the new dimensionless material parameter

(52)

has been introduced. The two parameters <5 and yare related to B l and B2 by

(53)

The decay length dis still defined by (31). On using (49) it can be written as

(54)

In the case of isotropy, it was possible to reduce the number of material parameters from
the original two, i.e., J11 and J1b to a single dimensionless parameter 6 = J11/J1b which is a
measure of the relative magnitudes of the shear moduli in the face layers and core. In the
anisotropic case, the problem as originally formulated involves six material constants.
While the eigenvalue A depends only on two dimensionless material parameters, namely <5

and y, it is seen from (54) that the decay length d depends on three such parameters <5, y
and B2 (or B I ). The parameters <5, y serve as a relative measure of the properties of one
material to the other. The isotropic case is recovered on setting al2 = 0, b12 = 0,
all = a22 = J11, bll = b22 = J12 in which case <5 == y = 6, and B2 = B l = 1. The geometry is
characterized by the volume fraction f defined in (32). On making use of (32) in (51), the
quantity1can be rewritten as

It can be readily verified that

o<l< 1.

(55)

(56)

The quantity lis fully specified by the choice off, <5, and y. In the following, the geometric
parameter, j; will be restricted to the interval 0.1 ~f ~ 0.9 and limiting values off will
again represent a thin or a thick core. In this geometric interval, the range of l is still
0<1< I, butlcan be close to 0 or 1.

5.1. Properties of the transcendental equation
Some properties of eqn (23) are established in Baxter (1995) :

1. The eigenvalues A are real.
2. The transcendental eqn (23) can be factored. It will be assumed that I. =/= oj =/= 0.5.

Whenl = 0.5 the transcendental equation can be solved explicitly for;, (see below).
The corresponding reduced form of (23) is
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cot(jA) cot [(1-j)A] - if = o.
91

(57)

Equation (57) is symmetric with respect to interchanges of j and (1-j) but, as
pointed out above, since/also involves material parameters, this does not represent
a geometric symmetry.

3. When b = 1, eqn (23) reduces to (35), so that the eigenvalue A is the same as that
for the homogeneous isotropic strip, i.e.,

A = nf2,

for all geometries. Observe that b= 1 simply requires that

(58)

(59)

making this a special sandwich strip with anisotropic layers and core whose elastic
constants are related by (59). When b = 1, it follows from (53) that

(60)

so that, on using (58), (54) now reads

(61 )

4. When b = y, it follows from (51) thatj = f Replacing bby y in (23) it is seen that
the eigenvalues A are identical to those of the isotropic sandwich strip if b in (23) is
identified with ~). Observe that b = y simply requires that

(62)

or equivalently

(63)

This is again a special sandwich strip where the elastic constants are related by (62).
When (62) holds, (54) reads

In (100) /
d = " [v B(2cl +CJ)].

A -
(64)

The analysis of Section 3 for I. can now be applied in the present case with 6 in
Section 3 replaced by y defined in (52). The decay length dhas a further dependence
on the elastic constants through the appearance of jB in (64).

5. When a,fJ == b~/i so that the strip is homogeneous, b = 1, 'I' = 1 and again
B j = B 2 == B. In this case (23) reduces to

sin (2/.) = 0,

so that

, n
A=-

2

(cf. (36) in the isotropic case). Thus the decay length is

(65)

(66)
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In(100);- In (1 00)(Ja 1 I an - aT2)
d=---yBh= h,

n n an
(67)

where h is the strip width. The result (67) was obtained previously in Horgan and
Payne (1993) and Horgan and Miller (1994). The isotropic result follows from (67)
on setting a12 = 0, all = an.

6. Equation (23) can be solved explicitly for }. when j = 0.5. This will be called the
anisotropic canonical case. In this case, on using (55), the volume fraction f and
the material parameters b, yare related by

f I
(I-f) t·

The smallest positive root A for the anisotropic canonical case is given by

• I ( 1 )Ie = 2 tan - .. r;. .

Vb

(68)

(69)

This is the anisotropic analog of (38). The decay length is given by (54), with}, as
in (69).

7. In the case where each of the layers is constructed of an orthotropic material, i.e.,
when

the material parameters simplify slightly, so that

(70)

allan

bllbn '
(71)

(72)

In the special subcase where the structure is composed of the same orthotropic
material, with the core layer rotated 90'" off the original material axis, then the
structure behaves as if it is composed of two different orthotropic materials. When
the x-axis coincides with the principal material axis,

(73)

and when the material is rotated 90", the core moduli are then

(74)

In each case the shear moduli G31 and G32 are given with respect to a fixed material
orientation. From (71), it is now seen that b = 1 for all geometries so that this case
is a subcase of 3 above and A is given by (66). From (72)

(75)

where OJ is a new dimensionless material parameter. Further discussion of this
special case is carried out in the next section.
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When the layers of the sandwich structure are constructed of orthotropic materials,
then 3,;, B, are given by (71), (72), and the decay l~th is given by (54). The decay length
depends on three material parameters 3, y, and ..j B j or JB;. Two illustrative examples
are considered below. In the first example, the same orthotropic material is used in two
orientations, while in the second, specific numerical data is used for two independent
orthotropic materials.

6.1. [0/90/0] Orthotropic structure
A sandwich structure is constructed of one orthotropic material. In layers 1 and 3, the

main axis of the material lies parallel to the x-axis. In layer 2, the main axis of the material
lies parallel to the structure's z-axis. For this structure the material constants are given by
(73) and (74). On using (66) and (75) in (54), the decay length d now reads

2In(100)[ C2Jd = 2c 1w+ - ,
n w

which depends on the single material parameter w. From (76) it is seen that

d ---> (fj, as w ---> 0,

d ---> (fj, as w ---> (fJ,

(76)

(77)

(78)

so that the decay length tends to infinity for both limiting cases. The decay lengths for this
structure will be compared below to those for the homogeneous isotropic strip and for the
isotropic two phase structure, which also depends on only one material parameter.

It is easy to show from (76) that, for a given geometry, the minimum decay length
occurs when

- J(l-f)
w- f'

Substituting (79) into (76), the minimum decay length is then explicitly given as

(79)

(80)

To plot the decay length for a variety of geometries, it is again convenient to use the
scaled decay length as in (40) so that

(81 )

and thus
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- 4In(100) / .
dmin == k/f(1-1)].

n
(82)

Figure 7 plots dvs w for various volume fractions in the range 0.1 ~I ~ 0.9.

Orthotropic two phase us homogeneous isotropic strip. The degree of applicability of
Saint-Venant's principle for this structure is assessed by comparing the orthotropic scaled
decay length to the scaled decay length of a homogeneous isotropic strip. Thus, when

- 2In(100)[ (I-/)J 2In(100)
d= fw+-- > ,

n w n
(83)

the decay length is longer than that for a homogeneous isotropic strip and conversely.
Inequality (83) holds under the following conditions:

or

1
I> (1 +w) and w > I,

1
1< (I +w) and w < I.

(84)

(85)

This implies, for a given material, a geometric characterization of a structure which will
satisfy (83). When w> I, the material in the outer layers is stronger in shear in the z
direction than is the core. In this case the decay length in the orthotropic two phase structure
will be greater than that of the homogeneous isotropic structure if the orthotropic structure
has a thin, i.e., I> 0.5, core. When w < 1, the same comparison holds if the orthotropic
structure has a thick, i.e.,j < 0.5, core.

Orthotropic two phase us isotropic two phase. In comparing this orthotropic structure
with the isotropic two phase structure, two main features are noted. First, the values of the
characteristic material parameters w = 1 in the former and l) = 1 in the latter each mark a
transition point across which the effect of geometry on the decay length changes. Note that
where w = I or 6 = I, both problems reduce to that for an homogeneous isotropic strip.

Scaled decay lengths: orthotropic layers
25

20

15

d
10

5

0
0.01 0.1 1

w
10 100

Fig. 7. Scaled decay length vs OJ.
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Second, a shorter decay length is achieved for the isotropic structure when the material
parameters which characterize each layer flj, fl2 are extremely different, whereas for this
special orthotropic structure, the shorter decay lengths are found for materials where the
values of G23 , G13 are close to one another. Figure 8 plots the scaled decay length as a
surface over the values wand f.

6.2. Two distinct orthotropic phases
The second illustrative example of a sandwich structure with orthotropic phases con­

cerns numerical results for specific face and core materials. The data used here was supplied
by W.B. Avery, Boeing Commercial Airplane Group, Seattle WA, and is used to indicate
the order of magnitude which might be expected for the decay length in practical aircraft
structures. The sandwich is composed of thin face layers of Hercules' AS4/8552 and Hexce1's
HRP Honeycomb core. The elastic constants in the face (a,p) and core layers (b,p) are then

all = 153.2, bll = 6.3920,

an = 104.0, bn = 3.0456,

where all units are 104 psi. The geometry is defined by

2c I = 0.0876", 2C2 = 0.75".

From this data, one readily finds that

f= 0.1894, ')' = 34.1476,

j = 0.1638, 8- = 28.6082.

The first non-zero root of (57) is found to be

A == 0.4902.

From (31), the decay length is calculated as

Scaled
10000

decay length

(log scale)

1000

100

10

o

1
omega, (log scale)

(86)

(87)

(88)

(89)

(90)

(91)

Fig. 8. Decay length surface: orthotropic [0/90/0] structure.
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d~6.I02". (92)

The corresponding result for a homogeneous isotropic strip is given by (30), (31), (36) as

(93)

Thus the characteristic decay length (92) for the orthotropic sandwich structure is seen to
be approximately four and a half times longer than that for the homogeneous isotropic
strip. If the total width of the sandwich is denoted by h, then

d ~ 6.5953 h",

while the characteristic decay length for the homogeneous isotropic strip is

d ~ 1.4657 h".

(94)

(95)

7. CONCLUDING REMARKS

Previous research by Choi and Horgan (1978) on problems involving plane defor­
mations of symmetric sandwich structures predicted a much longer decay length for Saint­
Venant end effects in isotropic phase structures with relatively compliant cores compared
with that for a homogeneous isotropic strip. The present work shows that similar con­
clusions can be reached regarding anti-plane shear deformations of isotropic phase struc­
tures. Additionally, it is found that an analogous result holds for isotropic phase structures
where the conditions of perfect bonding are relaxed. The anti-plane shear deformation,
with its simpler kinematics, allows for a more complete treatment of the Saint-Venant
decay lengths, in particular with regard to asymptotic results for compliant and stiff cores
respectively. Moreover, results for perfectly bonded sandwich strips with anisotropic phases
have also been obtained.

Decay lengths for perfectly bonded isotropic two phase sandwich structures depend
only on the two parameters/and 15 defined in (32), (33) respectively. The first,.f; the volume
fraction, is a geometric parameter while 15, the core ratio, is a material parameter. For all
geometries the decay length is an increasing function of the core ratio. The asymptotic
estimate (39) accurately reflects this behavior for large values of 15. Recall that a large value
of <5 indicates a relatively compliant core. Moreover, (39) shows that the decay length tends
to infinity as the core becomes infinitely compliant. Under conditions of imperfect bonding,
this trend is maintained, i.e., longer decay lengths are obtained with increasing 15. This can
also be observed, for finite values of <5, from the asymptotic formula (48) which is accurate
for large values of the slip constant a.

Returning to the imperfect bonding case, some additional remarks can be made. The
relaxation of the constraint of perfect bonding when modeling layered structures represents
a more realistic physical model. It can account for the effect due to a thin layer of adhesive
or differences in molecular structure at the interface due to the method of bonding. The
presence of slip in the model results in an increase in the decay length. For large values of the
slip parameter the decay length is so large that Saint-Venant's principle may be considered to
fail. However, for small values of the slip parameter, the effects of boundary conditions,
volume fraction and core ratio are similar to that of the perfect bonding model. In many
cases the decay lengths are only slightly greater than those of the perfect bonding case, and
the validity of Saint-Venant's principle is then judged by the same criteria as it is for perfect
bonding. This suggests that the addition of small slip can more accurately reflect the physical
behavior of the structure without fundamentally altering the decay of end effects.
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In conclusion, it is of interest to compare the decay length for anti-plane shear defor­
mations with that for plane deformations. For the homogeneous isotropic strip of width h,
(31) and (37) yield

In (lOO)h
d =' dul' = == 1.46h,

n
(96)

while it is well-known (see, e.g., Horgan and Knowles (1983), Horgan (1989)) that for
plane strain or plane stress

In (100)h
d =' dps = 4.2 == h. (97)

Thus the decay length for anti-plane shear is longer than that for plane deformations in the
case of a homogeneous isotropic strip. Hence, in a combined loading situation, the anti-plane
end effects penetrate further into the strip. For the homogeneous anisotropic case, the
situation is more complicated. For the class of anisotropy for which the anti-plane and
plane deformation fields decouple, dap is given by (67) while dps depends on different elastic
constants (see, e.g., Miller and Horgan (l995a, b)) and so a general comparison is not
possible. For the symmetric sandwich structure, with isotropic phases, it has been shown
in Section 3 that the material dependence of dap is reflected by the single parameter is given
in (33), whereas dp , depends on two dimensionless material parameters, for example the
Dundurs' parameters (see, e.g., Choi and Horgan (1978), Wijeyewickrema et al. (1996)).
However, since (96), (97) show that in the limiting case of a homogeneous material

(98)

one would expect (98) to hold also for sandwich structures with nearly identical phases.
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